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1 Decomposing cash holdings in the US

This section investigates the rise in cash holdings occurring at the ZLB by focusing on the US.

First, we use the balance-sheet tables of the Households and Nonprofit Organizations (B.101),

of the Nonfinancial Corporate Business (B.103) and of the Nonfinancial Noncorporate Business

(B.104) from the Financial Accounts of the US. The series used are the Checkable Deposits

and Currency (FL153020005, FL103020005 and FL113020005). These are deflated by the CPI,

obtained from the International Financial Statistics. The results are shown in Figure 1. The

figure shows that both households and the nonfinancial businesses increase their cash holdings

at the end of 2008, when the Fed funds rate started approaching zero. Among the nonfinancial

businesses, the corporate sector accounts for most of the increase. This is consistent with our

model, as the demand for money for saving purposes arises for the less constrained agents in

the economy.

Second, we use the Survey of Consumer Finances (SCF) to decompose cash holdings by

households into different household categories. We consider checking account holdings only,
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Figure 1: Checkable Deposits and Currency, billions of 2010 USD

Source: Financial accounts of the US, Federal Reserve, International Financial Statistics, authors’ calculations.

as currency is not available in the survey. We aggregate this variable within some categories

of households, trying to reflect the split between households who participate in financial mar-

kets (our investors) and households who do not participate in financial markets (our hand-to-

mouth workers). We use several proxies: households above the 90th percentile of net worth

versus those below; households above the 90th percentile of liquid wealth versus those below;

households owning a business or some stocks versus those owning neither; non hand-to-mouth

households versus hand-to-mouth households (HTM). Aggregated holdings are deflated by the

CPI, obtained from the International Financial Statistics.

The definition of liquid wealth follows Kaplan et al. (2014): it consists of checking, saving,

money market, and call accounts as well as directly held mutual funds, stocks, corporate bonds,

and government bonds, minus the sum of all credit card balances that accrue interest, after the

most recent payment. The definition of HTM households also follows Kaplan et al. (2014), but

is even more inclusive. HTM households are those whose average liquid wealth balances are

positive (to capture the fact they are not borrowing), but are equal to or less than half their

earnings per pay period. as a pay period, we use a month instead of two weeks, to obtain a
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Figure 2: Households’ checking account holdings, billions of 2010 USD

Source: Survey of Consumer Finances, Federal Reserve System, authors’ calculations.

higher share of HTM households. The proportion of non-HTM is therefore more conservative.

We obtain a proportion of HTM that is around 0.36 on average between 2001 and 2013.

The results are represented in Figure 2. The figure shows that the bulk of the increase

in cash holdings between the 2007 and 2013 surveys, among households, comes mainly from

households with a high net worth, liquid wealth, households owning a business or stocks and

especially, non-HTM households.

2 Calibration

2.1 Net position of investors

To evaluate the net position of investors, we first use the balance-sheet table for Nonfinancial

Corporate Business (B.103) from the Financial Accounts of the US. A simple way to map the

net position to the data is to follow the capital accumulation equation, (14), taken in the normal

equilibrium with zero money holdings. The net position is the difference between investors’ net
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worth (the right-hand side of the equation) and capital (the first term on the left-hand side).

Accordingly, we can define the net position in the data as the difference between net worth

(FL10209005) and Nonfinancial Assets (LM102010005). The resulting net position is very close

to 0 in pre-crisis years, moving from −2% of US GDP in 2000 (about −300 billions USD) to

6% of US GDP in 2006 (about 800 billions USD). By contrast, there was a large and negative

net position earlier in time, at about −20% of GDP from the mid-nineteen seventies to the

beginning of the nineteen nineties.

A more detailed mapping can be done by focusing on interest-bearing assets. We compute

a second measure of the net position as: Time and savings deposits (FL103030003) + Money

market fund shares (FL103034003) + Security repurchase agreements (FL102051003) + Credit

market instruments (FL104004005) + Trade receivables (FL103070005) + Miscellaneous assets

(FL103090005) on the asset side − Credit market instruments (FL104104005) − Trade payables

(FL103170005) − Miscellaneous liabilities (FL103190005) on the liability side. The difference

with the previous measure is that we now exclude deposits and currency, mutual fund shares

and foreign direct investment. This second measure is also close to 0 pre-crisis, at −9% of GDP

in 2000 and −2% of GDP in 2006.

Overall, the data suggests that investors were close to autarky in pre-crisis years.

2.2 Supply of assets by other agents

To calibrate the balance sheet parameters l̄g and l̄w, we measure the net supply of available

interest-bearing instruments by the Government in the Financial Accounts of the US in 2006.

We start by constructing the net position in interest-bearing instruments of the Government

(including the monetary authority) from tables L.105 and L.109 as:

• Government: Time and savings deposits (FL363030005) + Money market fund shares

(FL213034003) + Security repurchase agreements (FL212051003) + Debt securities (FL364022005)

+ Loans (FL364023005) + Trade receivables (FL363070005) on the asset side − Debt se-

curities (FL364122005) − Loans (FL364123005) − Trade payables (FL363170005) on the

liability side;

• monetary authority: Security repurchase agreements (FL712051000) + Debt securities
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(FL714022005) + Loans (FL713068005) on the asset side − Security repurchase agree-

ments (FL712151003) on the liability side.

We find a net position approximately equal to −40% of GDP in 2006, implying a net supply

of 40% of GDP. However, not all assets were available to domestic savers since the rest of the

world is also a large consumer of US assets. We then compute the net position of the rest of

the world in interest-bearing assets from table L.133 as: US time deposits (FL263030005) +

Money market fund shares (FL263034003) + Security repurchase agreements (FL262051003)

+ Debt securities (FL264022005) + Loans to US corporate business (FL263069500) + Trade

receivables (LM263070003) on the asset side − Security repurchase agreements (FL262151003)

− Debt securities (FL264122005) − Loans (FL264123005) − Trade payables (LM263170003)

on the liability side. The resulting net position was also close to 40% in 2006. As a result, the

supply of interest-bearing assets by the Government net of the demand by the rest of the world

was approximately 0. We therefore calibrate l̄g = 0.

The assumption of autarkic investors requires l̄g + l̄w = 0. Therefore, we set l̄w = 0.

3 Model

3.1 Equilibrium conditions of the benchmark model

The equilibrium conditions of the benchmark model presented in Section 2 are the following.

1

cSt
= βrt+1

1

cIt+1

(21a)

cIt = (1− β)(at+1 +mS
t+1) (21b)

MS
t+1

(
rt+1 −

Pt
Pt+1

)
= 0, rt+1 ≥

Pt
Pt+1

, MS
t+1 ≥ 0, (21c)

bt+1

rt+1

+ at +
MS

t

Pt
= cIt + kt+1, (21d)

ρtkt = cSt + bt +
at+1

rt+1

+
MS

t+1

Pt
, (21e)

bt+1 = φtρt+1kt+1, (21f)
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cwt +
Mw

t+1

Pt
+ lwt = wt +

Twt
Pt

+
Mw

t

Pt
+
lwt+1

rt+1

, (21g)

lwt+1 = l̄wt yt+1, (21h)

Mw
t+1 = (1− α)Ptyt, (21i)

yt = kαt , (21j)

ρtkt = αyt, (21k)

wt = (1− α)yt, (21l)

Mt+1

Pt
+
lgt+1

rt+1

=
Mt + Twt

Pt
+ lgt , (21m)

lgt+1 = l̄gt yt+1, Mt+1/Mt = θt+1, (21n)

bt+1 + lwt+1 + lgt+1 = at+1, (21o)

MS
t+1 +Mw

t+1 = Mt+1. (21p)

Equations (21a) to (21c) are the optimal consumption and portfolio choice of investors,

under budget and (binding) borrowing constraints (21d) to (21f), as discussed in Section (2.2).

Equations (21g) to (21i) characterize consumption, borrowing, and money demand of workers

given the budget and (binding) borrowing and CIA constraints. Equations (21j) to (21l) are

the production function, the equilibrium return on capital and the equilibrium wage, (21m)

and (21n) describe government policy, and (21o) and (21p) are market clearing conditions for

bonds and money.

3.2 Extended model used in simulations

The model that is simulated is a stochastic version of the model presented in Section 2, with

partial capital depreciation and, in some cases, downwardly-rigid nominal wages. In this model,

leverage φt is a stochastic that can take two values, φH > φL. We simulate an economy that

starts initially in a steady state where φt = φH . In period 1, φt unexpectedly drops to φH .

In each period t, φt switches back to φL with probability λ, and stays there. Because of

aggregate uncertainty, nominal bonds are not equivalent to real bonds, as the future price level

is uncertain, given rise to risk premia.
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3.2.1 The extended setup

Investors The I-investors’ budget constraint (1) is then replaced with:

Bt+1

Ptit+1

+
At
Pt

+
MS

t

Pt
= cIt + kt+1.

and the S-investors’ budget constraint (2) is replaced with:

ρtkt = cSt +
Bt

Pt
+

At+1

Ptit+1

+
MS

t+1

Pt

The borrowing constraints (3) must also be adapted to a stochastic context, as they involve

uncertain future variables. In the case of investors, we assume that it is of the following type:

Et

[
u′(cIt+1)Bt+1

Pt+1

]
≤ φt Et

[
u′(cIt+1)ρt+1kt+1

]
Borrowers can renegotiate with their creditors (S-investors) the value of their debt repayment,

using the threat to default. The decision to renegotiate the debt is taken at the beginning

of period t + 1, before learning the macro shocks. In case of default, creditors can only get

the value of collateral φtρt+1kt+1. In order to avoid renegotiation, creditors limit their lending

ex ante so that to the expected value of debt repayment does not exceed that of collateral.

Those expected values are computed using the stochastic discount factor of creditors (cIt+1 is

the consumption of S-investors in the next period).

Workers Similarly, the workers’s budget constraint (4) now must be written as:

cwt +
Mw

t+1

Pt
+
Lwt
Pt

=
Wt

Pt
+
Twt
Pt

+
Mw

t

Pt
+

Lwt+1

Ptit+1

where Lwt+1 is the workers’ nominal debt and Wt = Ptwt the nominal wage. They face the same

CIA constraint (5) as in the benchmark model. As for investors, their borrowing constraint (6)

is replaced by:

Et

[
u′(cIt+1)Lwt+1

Pt+1

]
≤ l̄wt Et

[
u′(cIt+1)yt+1

]
.

8



Downward wage rigidities We suppose that the nominal wage cannot decrease too much

from period to period:

Wt = max {γWt−1, Pt(1− α)kαt } (22)

where γ ∈ (0, θ) is the degree of nominal rigidities. The level of employment ht is determined

by

ht = min

{
1,

(
(1− α)Pt
γWt−1

)1/α

kt

}
. (23)

Government The budget constraint of the government is now

Mt+1 +
Lgt+1

it+1

= Mt + Twt + Lgt .

We assume that the fiscal authority provides a supply of nominal bonds that sets the expected

value of repayment proportional to that of next period output:

Et

[
u′(cIt+1)Lgt+1

Pt+1

]
= l̄gt Et

[
u′(cIt+1)yt+1

]
.

This assumption is a way to normalize the supply of government bonds that will make our

computations easier. The stochastic discount factor used in this expression is the one of S-

investors as these are the only agents who can arbitrage in equilibrium between government

debt and consumption and hence who will be pricing this debt.

3.2.2 Equilibrium conditions

Before deriving equilibrium conditions it is useful to notice that all the nominal income of

I-investors in period t + 1 comes from their saving in nominal assets, either in bonds or in

money, At+1 +MS
t+1, and is known in period t. With logarithmic utility, their consumption cIt+1

is proportional to (At+1 + MS
t+1)/Pt+1. As the numerator is known in advance, the stochastic

discount factor u′(cIt+1) = 1/cIt+1 essentially only depends on the price level Pt+1. In particular,

Pt+1c
I
t+1 is known in period t. This simplifies a lot the equilibrium conditions of the model. For

instance, the borrowing constraint of investors simplifies to Bt+1 ≤ φt Et[Pt+1ρt+1]kt+1.

In some simulations, borrowing constraints may temporarily stop binding for 1 or 2 periods
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after the shock hits. Therefore, we derive equilibrium conditions under the general case where

borrowing constraints are not always binding, even though they will be binding in the steady

state and during most of transition dynamics. The equilibrium conditions are the following.

1

cSt
= βit+1Pt Et

[
1

Pt+1cIt+1

]
(24a)

cIt = (1− β)(at+1 +mS
t+1) (24b)

MS
t+1 (it+1 − 1) = 0, it+1 ≥ 1, MS

t+1 ≥ 0, (24c)

Bt+1

Ptit+1

+
At
Pt

+
MS

t

Pt
= cIt + kt+1, (24d)

ρtkt = cSt +
Bt

Pt
+

At+1

Ptit+1

+
MS

t+1

Pt
, (24e)[

Bt+1 − φt Et[Pt+1ρt+1]kt+1

][
Et(Pt+1ρt+1)− Ptit+1

]
= 0,

Bt+1 ≤ φt Et[Pt+1ρt+1]kt+1, Et(Pt+1ρt+1) ≥ Ptit+1,
(24f)

1

cwt
= γt + βPtit+1 Et

(
1

Pt+1cwt+1

)
, (24g)

cwt +
Mw

t+1

Pt
+
Lwt
Pt

=
Wt

Pt
+
Twt
Pt

+
Mw

t

Pt
+

Lwt+1

Ptit+1

, (24h)

γt
[
Lwt+1 − l̄wt Et(Pt+1yt+1)

]
= 0,

γt ≥ 0, Lwt+1 ≤ l̄wt Et(Pt+1yt+1),
(24i)

Mw
t+1 = (1− α)Ptyt, (24j)

yt = kαt h
1−α
t , (24k)

ρtkt = αyt + (1− δ)kt, (24l)

Wtht = Pt(1− α)yt, (24m)

ht = min

{
1,

(
(1− α)Pt
γWt−1

)1/α

kt

}
, (24n)

Mt+1 +
Lgt+1

it+1

= Mt + Twt + Lgt , (24o)

Lgt+1 = l̄gt Et(Pt+1yt+1), Mt+1/Mt = θt+1, (24p)

Bt+1 + Lwt+1 + Lgt+1 = at+1, (24q)

MS
t+1 +Mw

t+1 = Mt+1. (24r)
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Equations (24a) to (24f) solve the optimization problems of both groups of entrepreneurs,

under budget constraints (24d) and (24e). As before, (24a) to (24c) are the optimal consumption

and portfolio choice of investors. Equation (24f) is the optimal choice of leverage determined

either by the binding borrowing constraint or by the arbitrage condition between the expected

real return on bonds and capital.

Equations (24g) to (24j) characterize consumption, borrowing, and money demand of work-

ers given the budget, borrowing and CIA constraints. In particular, (24g) is the first-order

condition with respect to consumption, where γt is the Lagrange multiplier of the borrowing

constraint, and (24i) is the complementary slackness condition of the borrowing constraint.

The Lagrange multiplier of the CIA constraint can be shown to equal

γt + (it+1 − 1)Ptβ Et

(
1

(Pt+1cwt+1

)
.

The CIA is then strictly binding when either the borrowing constraint is binding or the interest

rate is away from the ZLB after the shock hits. This is in general the case. However, as

mentioned earlier, in some simulations the borrowing constraint stops binding for 1 or 2 periods

at the ZLB. Then the CIA constraint does not bind and the allocation of workers’ saving across

bonds and money is indeterminate during that period. As this only lasts for a very short period

of time, such indeterminacy has little material consequences, and so we simply assume that

households always hold the minimum possible amount of money, hence the binding CIA (24j).

Equations (24k) to (24m) are the production function, the equilibrium return on capital and

the equilibrium wage, (24n) is the labor supply curve implied by the downward-wage rigidity,

(24o) and (24p) describe government policy, and (24q) and (24r) are market clearing conditions

for bonds and money.

When borrowing constraints for investors and workers are binding, we get the equivalent of

the Euler equation (13) and the aggregate budget constraint (14) of the simple model:

β

(
1− φt−1

Et−1(Ptρt)

Ptρt

)
ρtkt =

1

Ptit+1

[
φt Et(Pt+1ρt+1)kt+1 + l̄t Et(Pt+1yt+1) +MS

t+1

]
,

kt+1 +
l̄t Et(Pt+1yt+1)

Ptit+1

+
MS

t+1

Pt
= β

[
ρtkt + l̄t−1

Et−1(Ptyt)

Ptyt
yt +

MS
t

Pt

]
.
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The main difference with the simple model is that (i) the future nominal output and the future

nominal return on capital are now uncertain, and (ii) real debt repayments depend on surprises

on both variables.

3.2.3 Simulations

We simulate a particular realization of the sequence of leverage {φt}t≥0 where φt switches back

to the high value φH in period t = 11. We proceed in the following way.

We first construct an “unlucky” path where φt never switches back—a 0-probability event.

Along this path, agents do expect φt to switch back with probability λ in every period. We

keep periods 0 to 10 of this path. Then, using as initial condition the vector of state variables

of the unlucky path at the end of period t = 10, we simulate a second path where φt = φH .

Pasting this second path to periods 0 to 10 of the unlucky path, we get the full equilibrium

path corresponding to the realization of {φt}t≥0.

We use Dynare (version 4.4.3) to simulate each of these two paths. The second one is a

straightforward deterministic simulation. The first one is more complex to simulate as it requires

to keep track in every period of expectations of future variables in the state where φt switches

back to φH in the following period. In particular, we need to compute Et[Pt+1|φt+1 = φH ]. Once

Et[Pt+1|φt+1 = φH ] is known, it is easy to compute all other needed expected variables using

relevant equilibrium conditions. The difficulty comes from the fact that Et[Pt+1|φt+1 = φH ]

itself may depend on Et[Pt+2|φt+1 = φH ] and so on. Fortunately, the forward iteration is finite.

Eventually, the economy exits the ZLB after the deleveraging shock stops. When that happens,

Et[Pt+s|φt+1 = φH ] is only a function of predetermined variables. Indeed, it is pinned down by

the CIA constraint when investors’ money holdings is 0, together with the labor supply curve:

Mt+s = (1− α) Et[Pt+sk
α
t+sh

1−α
t+s |φt+1 = φH ],

Et[ht+s|φt+1 = φH ] = min

{
1,Et

[(
(1− α)Pt+s
γWt+s−1

)1−α

kt+s

∣∣∣φt+1 = φH

]}
.

These two equations uniquely determine Et[Pt+s|φt+1 = φH ] and Et[ht+s|φt+1 = φH ] as a func-

tion of Mt+s and expected variables determined in previous periods.

To simulate the unlucky path, we then complement the model with conditional expectations

12



Et[·|φt+1 = φH ] of equilibrium conditions 1, 2,. . . , T periods ahead, assuming that the economy

has exited the ZLB in period t+T when φt+1 switches back to φH . In practice, T = 2 is enough

in most cases, as the economy usually exits the ZLB one period after the deleveraging shock

stops. When we simulate quantitative easing with late exit, the economy stays longer at the

ZLB and we need T = 5.

In some cases (especially when we simulate large shocks), the solving algorithm does not

converge with the model that allows for occasionally non-binding constraints. In those few

cases, we assume binding borrowing constraints in the model, and check that the computed

equilibrium satisfies γt > 0 (the borrowing constraint of workers is binding) and Et(Pt+1ρt+1) >

Ptit+1 (the borrowing constraint of investors is binding).

4 Proof of Proposition 1

We establish first the following Lemma:

Lemma 1 The normal and liquidity trap steady states are characterized as follows:

(i) In a normal steady state,

r∗ =
αφ+ l̄

βα(1− φ)
, k∗ =

[
βα− l̄(1/r∗ − β)

] 1
1−α , mS∗ = 0.

(ii) In a liquidity-trap steady state,

r̂ = 1/θ, k̂ =

(
β2 + φ(θ2 − β2)

θ/α

) 1
1−α

, m̂S = α

[
(1− φ)

β

θ
− φ− l̄/α

]
k̂α.

Proof. In a steady state, the money market equilibrium implies that Pt+1/Pt = θ. As a result,

i = rθ.

In a steady state with i∗ > 1, (13) and (14) are satisfied with MS = 0. Equation (13) taken

at the steady state gives r∗. Besides, (14) in the steady state gives:

k∗/y∗ = βα− l̄(1/r∗ − β)

13



which yields our result for k∗. This proves result (i).

In a steady state with i = 1, (13) and (14) are satisfied with r = r̂ = θ−1, which yields

k̂/ŷ = β2+φ(θ2−β2)
θα−1 , from which we derive k̂, and m̂S = α

[
(1− φ)β

θ
− φ
]
k̂α − l̄k̂α. This proves

result (ii).

We now prove Proposition 1.

Proof. Consider a normal steady state with l̄ = 0. According to Lemma 1, r∗ = φ/[β(1− φ)].

We check that 0 < βr∗ < 1 as φ < φmax and that i∗ = θr∗ ≥ 1 as φ ≥ φT , which insures that

the normal steady state exists and is locally constrained. This proves result (i).

If φ < φT , then the steady state without money does not exist, as the implied nominal

interest rate i∗ would be below one. If there exists a steady state with i = 1, then it is a liquidity

trap described by Lemma 1. According to Lemma 1, when l̄ = 0, m̂S = α
[
(1− φ)β

θ
− φ
]
k̂α,

which is strictly positive when φ < φT . Besides, r̂ = θ, which implies that 0 < βr̂ < 1 under

Assumption 1, and r̂ > r∗ for φ < φT . We also check that k̂ =
(
β2+φ(θ2−β2)

θ/α

) 1
1−α

< k∗ = (βα)
1

1−α

for φ < φT . This proves result (ii). Results (iii) and (iv) derive naturally from Lemma 1.

5 Extensions

5.1 Investors with a net debt position

When l̄ < 0, investors have a negative net position in assets. In that case, changes in the

interest rate have a redistributive effect between investors and workers. Capital accumulation

in the normal steady state becomes:

k = βαy −
(

1

r
− β

)
l̄y. (14′)

Since the economy is liquidity-scarce, the price of liquidity—here 1/r—is still larger than the

propensity to save β. With a lower interest rate, the price of liquidity increases even further,

but now investors are net suppliers of liquidity (l̄ < 0), so asset scarcity generates net resources

that increase the capital stock. Besides, as shown by the normal steady-state Euler equation:

r =
φ+ l̄/α

β(1− φ)
, (20)
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the interest rate falls after a deleveraging shock in the normal economy as before. Therefore, a

deleveraging shock should increase the long-run capital stock in the normal economy.

In a liquidity trap however, a deleveraging shock still has a negative long-run effect on

capital. In that case, as money and bonds are perfect substitutes, capital accumulation is not

affected by the net supply of bonds l̄ per se, but by the total amount of net liquidity s = mS+ l̄y:

k = βαy − (θ − β)s. (25)

where s is determined by the steady-state Euler equation taken in a liquidity trap, independently

from the net supply of bonds l̄:

s = α

[
(1− φ)

β

θ
− φ
]
y. (26)

This equation is similar to (18), with net liquidity s replacing cash holdings mS. After a

deleveraging shock on investors, the price of liquidity remains fixed at θ, whereas liquidity

s increases. Since s has the same price as money in a liquidity trap, an increase in s takes

resources away from investment as in the case of autarkic investors. Notice that we still have

mS = κ∆y, where the shadow rate is now defined by the right-hand side of (20). We therefore

refer to l̄y as the shadow liquidity. Indeed, l̄y would be the liquidity available to agents in the

absence of liquidity trap, as s = l̄y when ∆ = 0.

The main results are summarized in the following Proposition:

Proposition 2 (Steady state when entrepreneurs are net debtors) Define φmin(l̄) = −l̄/α,

φmax(l̄) = (1− l̄/α)/2 and φT (l̄) = (β− θl̄/α)/(θ+ β). If φmin < φ < φmax(l̄), then there exists

a locally constrained steady state with r < 1/β.

(i) If, additionally, φ ≥ φT (l̄), then the steady state is normal.

(ii) If φ < φT (l̄), then the steady state is a liquidity trap.

(iii) In the normal steady state, the real interest rate r and the nominal interest rate i are

increasing in φ, mS = 0 and if l̄ < 0 (l̄ > 0), then k is decreasing (increasing) in φ.
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(iv) In the liquidity-trap steady state, the real interest rate r and the nominal interest rate i

are invariant in φ, mS/y is decreasing in φ and k is increasing in φ.

Proof.

Consider a normal steady state. Using Lemma 1, we check that 0 < βr∗ < 1 as φmin(l̄) <

φ < φmax(l̄) and that i∗ = θr∗ > 1 as φ > φT (l̄), which insures that the normal steady state

exists and is locally constrained. This proves result (i).

If φ < φT (l̄), then the steady state without money does not exist, as the implied nominal

interest rate i∗ would be below one. If there exists a steady state with i = 1, then it is a

liquidity trap described by Lemma 1. According to Lemma 1, m̂S = α
[
(1− φ)β

θ
− φ− l̄/α

]
k̂α,

which is strictly positive when φ < φT (l̄). Besides, r̂ = θ, which implies that 0 < βr̂ < 1 under

Assumption 1, and r̂ > r∗ for φ < φT . We also check that k̂ =
(
β2+φ(θ2−β2)

θ/α

) 1
1−α

< k∗ = k∗ =[
βα− l̄(1/r∗ − β)

] 1
1−α for φ < φT . This proves result (ii).

Regarding the properties of r, i and mS, results (iii) and (iv) derive directly from Lemma

1. To derive the properties of k, we replace r∗ in k∗ to obtain

k∗ =

(
αβ − l̄

[
αβ(1− φ)

αφ+ l̄
− β

])1/(1−α)

(27)

We can see that k∗ is increasing in φ for l̄ > 0, decreasing for l̄ < 0.

Figure 3 represents the effect of φ on the steady state with a net supply of bonds from

the rest of the economy (l̄ < 0). The solid lines show the effective values of k, r, and s as a

function of φ, while the broken lines show their values if the ZLB were not binding. When φ is

above φT , the steady state is normal, so s = l̄y. When φ decreases while staying above φT , the

equilibrium interest rate decreases. Since investors are net debtors, this has a positive effect on

the investors’ income, which increases the long-run capital stock. When φ falls below φT , then

the steady state is a liquidity trap. As a result, the interest rate does not fall as a response

to a deleveraging shock, thus not reestablishing the financing capacities of investors. Instead,

investors start increasing their liquidity s by holding money, which has a negative effect on

capital accumulation.1 As a result, an economy that experiences a drop in φ that brings the
1When investors are net creditors (l̄ > 0), the capital stock decreases in φ both in the normal and liquidity
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Figure 3: Steady states - Comparative statics w.r.t. φ, with l̄ < 0

equilibrium from C to T as in Figure 3 has less capital in the long run.

5.2 The effect of liquidity injections

Next, we study what happens when the Government implements a liquidity injection resulting

in a higher l̄ when investors are initially net debtors or in autarky. The effect on capital

accumulation is ambiguous. It depends on private leverage φ and on l̄ as the economy exits the

trap. Indeed, the following Proposition shows that, in general, capital in a normal equilibrium

is a U-shaped function of l̄, and defines the corresponding threshold l̄0 above which it becomes

increasing as well as the level of liquidity l̄T necessary to get out of the ZLB.

Proposition 3 (Effect of l̄) Define l̄0(φ) = α
√
φ(
√

1− φ −
√
φ), l̄min(φ) = −αφ, l̄max(φ) =

α(1 − 2φ) and l̄T (φ) = αβ(1 − φ)/θ − αφ. We have l̄min < l̄0 < l̄max iif 0 < φ < 1/2. For

l̄min(φ) < l̄ < l̄max(φ), then there exists a locally constrained steady state with r < 1/β.

(i) If, additionally, l̄T (φ) ≤ l̄, the steady state is normal.

(ii) If l̄ < l̄T (φ), the steady state is a liquidity trap.

trap steady state. However, this case is less realistic.
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(iii) In the normal steady state, the real interest rate r and the nominal interest rate i are

increasing in l̄, mS = 0 and k is decreasing (increasing) in l̄ for l̄ < l̄0 (l̄ > l̄0).

(iv) In the liquidity-trap state, the real interest rate r and the nominal interest rate i are

invariant in l̄, mS/y is decreasing one for one in l̄ and k is invariant in l̄.

(v) if φ > β/(β+ θ), then l̄T < 0, so there exists normal steady states with l̄ < 0. In that case,

l̄0 > l̄T so k is decreasing in l̄ in the right neighborhood of l̄T .

Proof.

Results (i) and (ii) derive directly from Lemma 1. Regarding the properties of r, i and

mS, results (iii) and (iv) derive directly from Lemma 1. To derive the properties of k, we use

(27) and take the derivative of k with respect to l̄. We find that k is decreasing in l̄ whenever

P (l̄) ≥ 0 with

P (l̄) = l̄2 + 2αφl̄ − α2φ(1− 2φ)

This second-order polynomial admits two roots: l̄00 = −αφ − α
√
φ
√

1− φ and l̄0 = −αφ +

α
√
φ
√

1− φ. As l̄00 < l̄min, l̄0 is the only relevant solution. As a result, k is decreasing in l̄ for

l̄min ≤ l̄ ≤ l̄0 and increasing for l̄0 ≤ l̄ ≤ l̄max.

To show (iv), note that there exists normal steady states with l̄ < 0 iif l̄T (φ) < 0, which is

the case when φ > β/(β + θ). Besides, k is decreasing in l̄ in the right neighborhood of l̄T (φ)

iif l̄0 > l̄T , which is the case when φ > β2/(β2 + θ2). Since θ/β > 1 by assumption, we have

φ > β/(β + θ) implies φ > β2/(β2 + θ2), hence the result.

Hence, if l̄T is lower than l̄0, then exiting the liquidity trap through a higher public debt

would have a negative effect on capital. We can show that this happens if the deleveraging

shock is not too large, leaving φ > β2/(β2 + θ2). Indeed, in that case, the level of liquidity

necessary to get out of the ZLB is low. If on the opposite the deleveraging shock is large, so

that φ < β2/(β2 + θ2), then l̄T is higher than l̄0, leading to a positive effect on capital. This is

illustrated in Figure 4. The left panel consider the case with a high φ, where at the exit of the

ZLB capital starts to decrease. The right panel considers the case with a low φ, where at the

exit of the ZLB capital starts to increase.
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(a) High φ (b) Low φ

Figure 4: Steady states - Comparative statics w.r.t. l̄, with high and low φ

When investors are initially in a constrained autarkic steady state, our benchmark case, a

sufficient increase in public debt always leads to higher capital, even if lower capital can obtain

on an intermediate range of public debt.

Workers’ deleveraging Consider a deleveraging shock on workers, that is, a fall in l̄ = l̄g+ l̄w

through a fall in l̄w. According to (ii), workers’ deleveraging can also lead to the zero lower

bound if l̄ < l̄T . Indeed, the effect on r is similar to a deleveraging shock on investors, as r

declines with the size of the deleveraging shock, as stated in (iii), leading to the zero lower

bound.

However, once the economy is in a liquidity trap, changes in l̄ have no effect, as stated in

(iv). Indeed, since the interest rate cannot adjust in a liquidity trap, the net demand for assets

s is constant, so any decrease in the supply of assets to investors through l̄ is matched by an

increase through mS. As before, higher real holdings of money obtain through a downward

shift in the path of prices.
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Finally, since investors are initially autarkic, they become net debtors following the workers’

deleveraging (l̄ < 0), so we are in the situation described by (v), namely with l̄0 > l̄T , so k is

decreasing in l̄ in the right neighborhood of l̄T . Therefore, if the workers’ deleveraging brings

the economy to the liquidity trap, capital increases before falling in the trap. Thus, in the case

where investors are initially in autarky, only an investors’ deleveraging that brings the economy

to a liquidity trap can decrease capital in the long run.

5.3 Increasing inflation

The effect of inflation on equilibrium is described in details in the following proposition:

Proposition 4 (Effect of steady-state inflation) Define θ0(φ) = (1/φ − 1)
1
2β, θT (l̄, φ) =

βα(1− φ)/(αφ + l̄) and assume l̄min(φ) < l̄ ≤ l̄max(φ) as in Proposition 3. Then β < θT (l̄, φ).

If θ ≥ θT (l̄, φ), then the steady state is normal. If β < θ ≤ θT (l̄, φ), then the steady state is a

liquidity trap and has the following properties:

(i) the real interest rate r is decreasing in θ;

(ii) if φ < 1/2, the capital stock is U-shaped in θ, decreasing for β < θ < θ0(φ) and increasing

for θ0(φ) ≤ θ ≤ θT (l̄, φ); if φ ≥ 1/2, it is always increasing in θ;

(iii) still, an increase in θ from a value below θT (l̄, φ) to a value above θT (l̄, φ) necessarily

increases the capital stock if l̄ ≤ 0.

Proof.

The proof derives from Lemma 1, with a threshold θT (l̄) defined such that φ = φT (l̄) when

θ = θT (l̄). To derive result (ii), we take the derivative of k with respect to θ and show that it

is negative for β < θ < (1/φ− 1)
1
2β and positive for (1/φ− 1)

1
2β ≥ θ ≥ θT (l̄). To show (iii), it

is enough to show that capital with θ = β is lower than capital with θ = θT (l̄). With θ = β,

we have k = (αβ)
1

1−α . With θ = θT (l̄), the economy becomes normal so we have k = k∗. Using

the definition of k∗ as given by Lemma 1, we know that k∗ ≥ (αβ)
1

1−α whenever l̄ ≤ 0.

The inequality φ < 1/2 is natural when considering a liquidity trap: it is a necessary

condition to get a liquidity trap with autarkic investors. The situation where θ < θ0(φ) occurs
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when both φ and θ are low, generating high real money holdingsm, which makes higher inflation

more costly. However, if θ is increased to a level that is higher than θT (φ), then the economy

gets out of the liquidity trap, money holdings disappear, and inflation has a positive effect on

capital.2

5.4 Addressing the short-term output gap with monetary transfers

This section shows that an appropriate monetary policy is able to address the negative output

gap after a deleveraging shock when there are downward wage rigidities, but not the medium

run effects studied in the paper.

The thick red line in Figure 5 represents the case of downwardly-rigid wages, and the thin

black line is the case of flexible wages. Consider now a monetary expansion taking the form

of transfers to workers. In the simulation represented by the dashed blue line, the government

increasesM when the shock hits. The increase is calibrated so that the nominal wage converges

back to its initial value as time goes by. When the shock is reversed, the monetary expansion

is reversed as well.

As the figure shows, the resulting dynamics of real variables is very close to the dynamics

with flexible wages. By increasing money supply, monetary policy substitutes to the fall in the

price level that would obtain with flexible prices.

This result stands in sharp contrast to existing work, for instance Krugman (1998), where

money creation taking the form of transfers has no effect at the ZLB with pre-set prices (see

footnote 11 of this work). It comes from the non-ricardian structure of the model, which gives

rise to the Pigou-Patinkin effect described in the main text. However, if a policy of monetary

transfers can be very effective in closing the output gap in the short-run of this model, it has

no effect in the medium run and therefore cannot prevent the medium term output losses.

Because the composition of government liabilities at the ZLB does not matter, an increase in

transfers to households financed by government debt would have the same effect as a monetary

expansion.
2Assumption 1 implies that the threshold φT of Proposition 1 is strictly lower than 1/2.
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Figure 5: Transitory dynamics after a deleveraging shock. The shock hits in period 1 and lasts
for 10 years. Thick red line: downwardly-rigid wages. Dashed blue line: downwardly-rigid
wages with a monetary expansion when the shock hits. Thin black line: flexible wages. All
variables are in relative deviation from initial steady state, in percent, except interest rates and
M s/M which are in absolute deviation from initial steady state, in percent.

5.5 Bubbles

Consider an infinitely-lived asset in fixed unitary supply with no intrinsic value—a bubble.

Denote zt its relative price in terms of consumption goods. The real return of the bubble as

of time t is zt+1/zt. For the bubble to be traded, this rate of return must be equal to the real

interest rate: zt+1/zt = rt+1. With rt+1 different from 1, the bubble would either asymptotically

disappear or diverge to an infinite value. Then, a bubbly steady state necessarily has a zero real

interest rate: r = 1. With positive long run inflation, 1 > 1/θ, the bubble strictly dominates

money as a saving instrument. Therefore, S-investors would hold the bubble and would not

hold money.3 In the case of autarkic investors, such a bubbly steady state is described by:

z = α[(1− φ)β − φ]y (28)

k = βαy − (1− β)z (29)

3With negative long-run inflation, bubbles would be dominated by money and could never arise in equilib-
rium.
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where (28) is the Euler equation of savers and (29) the aggregate budget constraint of investors.

As can be seen from equations (18) and (19), the bubbly steady state is formally equivalent

to a liquidity trap steady state with mS = z and θ = 1. The bubble plays the same role as

investor-held money in the liquidity trap, but offers a higher real return. This allows us to

derive the following Proposition.

Proposition 5 (Bubbly steady state with autarkic investors) Suppose 0 < φ < φmax

and θ > 1. Define φB = β/(1 + β) and φK = β2/(θ + β2). We have φB > φT > φK.

(i) If φ ≥ φB, there is a unique normal steady state as described by Proposition 1.

(ii) If φT ≤ φ < φB, there is a normal steady state with r = φ/[β(1 − φ)] < 1 and a bubbly

steady state with r = 1.

(iii) If φ < φT , there is a liquidity-trap steady state with r = 1/θ < 1 as described in Proposi-

tion 1 and a bubbly steady state with r = 1.

(iv) In the bubbly steady state, the real (nominal) interest rate is given by r = 1 (i = θ), z/y

is decreasing in φ and k is increasing in φ.

(v) Capital and output are strictly lower in the bubbly steady state than in the normal steady

state. They are lower in the bubbly steady state than in the liquidity-trap steady state

when φK ≤ φ < φT and larger in the bubbly steady state than in the liquidity-trap steady

state when φ < φK.

Proof. Points (i) to (iv) directly follow from Proposition 1 using the formal equivalence between

bubbly steady states and liquidity-trap steady states mentioned in the text. From (28) and

(29), we get k1−α = α
(
β − (1− β)[(1− φ)β − φ]

)
in the bubbly steady state. Comparing this

with the normal and liquidity trap steady states, we get point (v).

As the Proposition shows, a bubble can help the economy exit the liquidity trap if θ > 1.

The bubble raises the nominal interest rate from i = 1 to i = θ. S-investors then substitute the

bubble for money in their portfolio. For a given money supply, this also reflates the economy

as the price level increases to accomodate the lower money demand.
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However, the bubbly steady state is qualitatively similar to a liquidity trap. As with money,

holding the bubble takes out resources from investment and output is lower in the bubbly

equilibrium than in the normal steady state. In the intermediate case where φT ≤ φ < φB, a

bubble prevents the downward interest rate adjustment that would restore the normal level of

capital and output. In the case of low leverage φ < φT , bubbles increase the real interest rate,

which may or may not increase capital and output compared to the liquidity trap. A higher

real interest rate decreases the price of liquidity but increases the net liquidity of investors,

with an ambiguous total effect on investment depending on the level of net liquidity. This is

similar to the ambiguous effect of inflation described in Proposition 4.

5.6 Preference and Growth Shocks

With study the effect of β on output in the case of autarkic investors (l̄ = 0).4 We derive the

following Proposition:

Proposition 6 (Effect of β on the steady state with autarkic investors) Define βT =

θφ/(1− φ) and φmax = 1/2.

If 0 < φ < φmax, then there exists a locally constrained steady state with r < 1/β.

(i) If, additionally, β ≤ βT , then the steady state is normal.

(ii) If β > βT , then the steady state is a liquidity trap.

(iii) In the normal steady state, the real interest rate r and the nominal interest rate i are

decreasing in β, mS = 0 and k is increasing in β.

(iv) In the liquidity-trap steady state, the real interest rate r is invariant in β, mS/y is in-

creasing in β and k is increasing in β.

Proof. The proof derives from Lemma 1. Note simply that β > βT is equivalent to φ < φT ,

which defines the liquidity trap steady state. We then derive r, k and mS with respect to β in

the normal and liquidity trap steady states.
4This is without loss of generality as the investors’ net debt matters only in the normal economy.
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An increase in β makes the long-run interest rate fall, and eventually hit the zero-lower

bound. In both the normal and liquidity-trap steady states, an increase in β increases the

investors’ propensity to save, which increases the capital stock in the long run. As a result,

whereas an increase in β can explain the emergence of a liquidity trap, it cannot explain the

slowdown in investment. In the presence of trend growth, the same conclusions would hold in

case of a growth slowdown. In particular, with lower trend growth, less investment is required

to keep the capital stock on its trend. Therefore a given amount of saving leads to an upward

shift in the capital intensity of production, and hence in the investment rate.

5.7 Partial Capital Depreciation

We assume here that δ < 1, so that capital depreciates only partially from period to period.

For consistency, we focus on the case where investors are net debtors or in autarky l̄ ≤ 0. All

our results generalize provided some mild condition on l̄, as shown in the following Proposition:

Proposition 7 (Steady state when entrepreneurs are net debtors) Define φmax(l̄) = (1−

[1− β(1− δ)]l̄/α)/2 and φT (l̄) = (β− [θ− β2(1− δ)]l̄/α)/[θ+ β− (θ2− β2)(1− δ)l̄/α]. If l̄ ≤ 0

and 0 < φ < φmax, then there exists a locally constrained steady state with 0 < r < 1/β.

(i) If, additionally, φ ≥ φT , then the steady state is normal.

(ii) If φ < φT , then the steady state is a liquidity trap.

(iii) In the normal steady state, the real interest rate r and the nominal interest rate i are

increasing in φ if l̄ > −1/β(1− δ), and increasing in l̄ if l̄ > −1/[1 + β(1− δ)], mS = 0,

k is decreasing in φ and decreasing in l̄ in the neighborhood of l̄ = 0.

(iv) In the liquidity-trap steady state, the real interest rate r and the nominal interest rate i

are invariant in φ and l̄, mS/ρk is decreasing in φ and l̄ and k is increasing in φ and

independent of l̄.

Proof. With partial depreciation, using f(k) = [ρ(k) − (1 − δ)]k/α, we can show that the

dynamic system at the normal steady state satisfies

rβ(1− φ)ρ(k) = φρ(k) +
l̄

α
[ρ(k)− (1− δ)] (30)
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r = βr

[
ρ(k) +

l̄

α

(
1− 1

βr

)
[ρ(k)− (1− δ)]

]
(31)

We derive r∗ as follows. We use (31) to express ρ as a function of r and replace in (30).

This gives P (r) = 0 where P is a second-order polynomial defined by

P (r) = β(1− φ)

[
1 + β(1− δ) l̄

α

]
r2 −

(
φ+

l̄

α

)
r + φ(1− δ) l̄

α

This polynomial admits two roots. We have P (0) = φ(1 − δ) l̄
α
≤ 0 as l̄ ≤ 0 and φ > 0, so it

admits only one positive root, which we then take as our solution for r.

This solution is lower than 1/β as long as P (1/β) > 0. This is equivalent to φ < φmax.

Finally, i = rθ > 0 is guaranteed by P (1/θ) < 0, which implies φ > φT . In that case, the

economy is normal and follows (30) and (31). This proves result (i). Otherwise, the economy

is in a liquidity trap and follows

β(1− φ)

θ
ρ = φρ+

l̄

α
[ρ− (1− δ)] +

mS

k
(32)

1 = βρ− (θ − β)

(
l̄
α

[ρ− (1− δ)] +
mS

k

)
(33)

This proves result(ii).

To establish result (iii), we totally differentiate P with respect to φ . Using the fact that r

is the upper root of P so that P ′(r) > 0 , we can show that r is increasing in φ if and only if

β

[
1 + β(1− δ) l̄

α

]
r2 + r − (1− δ) l̄

α
> 0

This is the case for −1/β(1− δ) ≤ l̄ ≤ 0 as r is positive.

Similarly, we totally differentiate P with respect to l̄. Using the fact that r is the upper

root of P so that P ′(r) > 0, we can show that r is increasing in l̄ if and only if

r − (1− φ)(1− δ)β2r2 − φ(1− δ) > 0

As β2r2 < 1, a sufficient condition is r > 1 − δ. This is the case for l̄ > −1/[1 + β(1 − δ)], as

this guarantees P (1− δ) < 0.
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We then express r as a function of ρ using (30) and replace it in (31). We find that Q(ρ) = 0

where Q is a second-order polynomial defined by

Q(ρ) = β

[(
φ+

l̄

α

)(
1 +

l̄

α

)
− (1− φ)

l̄

α

]
ρ2−

(
φ+

l̄

α

)[
1 + 2β(1− δ) l̄

α

]
ρ+(1−δ) l̄

α

[
1 + β(1− δ) l̄

α

]

We select the upper root of this polynomial for similar reasons. We thus have

ρ =

(
φ+ l̄

α

) [
1 + 2β(1− δ) l̄

α

]
+

√(
φ+ l̄

α

)2

− φ(1− φ)β(1− δ)
[
1 + β(1− δ) l̄

α

]
2β
[(
φ+ l̄

α

)(
1 + l̄

α

)
− (1− φ) l̄

α

]
We compute Q(1/β) and show

Q(1/β) = −[1− β(1− δ)] l̄
α

[
1− 2φ− [1− β(1− δ)] l̄

α

]

This is positive if l̄ < 0, which implies that ρ < 1/β.

To study the effect of φ on k, we totally differentiate Q with respect to φ. Using the fact

that ρ is the upper root of Q so that Q′(ρ) > 0, we can show that ρ is increasing in φ if and

only if

(βρ− 1) + 2
l̄

α
β[ρ− (1− δ)] < 0

For l̄ < 0, βρ < 1. Besides, as the non-negativity on k imposes ρ ≥ 1− δ, then the second term

is also negative in that case. As a result, ρ is increasing in φ, which implies that k is decreasing

in φ.

Similarly, to study the effect of l̄ on k, we totally differentiate Q with respect to l̄. Using

the fact that ρ is the upper root of Q so that Q′(ρ) > 0, we can show that ρ is increasing in l̄

if and only if

[
1 + 2β(1− δ)

(
φ+ 2

l̄

α

)]
ρ− 2β

(
φ+

l̄

α

)
ρ2 − (1− δ)

[
1 + 2β(1− δ) l̄

α

]
> 0

This is the case both for l̄ = 0, for which ρ = 1/β. Therefore, ρ is increasing in l̄ in the

neighborhood of l̄ = 0. Since k is inversely related to ρ, k is decreasing in l̄ in the neighborhood

of l̄ = 0.
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To derive result (iv), consider Equations (32) and (33), which describe the liquidity-trap

steady state. They yield

ρ = θ
β2+(θ2−β2)φ

mS

k
=

[
β
θ
(1− φ)− φ− l̄

α

]
ρ+ (1− δ) l̄

α

As θ > β, ρ is decreasing in φ, which implies that k is increasing in φ. We can also see that ρ

and hence k are independent of l̄. Similarly, as i = 1 and r = 1/θ in a liquidity trap, i and r are

independent of φ and l̄. Regarding mS/k, since ρ is decreasing in φ, then mS/k is decreasing

in φ. Finally, since ρ is independent of l̄ and ρ > 1− δ, then mS/k is decreasing in l̄.

5.8 Financial Intermediation

In the benchmark model, money is modeled as outside money directly supplied by the gov-

ernment. However, in practice, cash holdings usually take the form of deposits, which are a

liability of banks, and could in principle be intermediated to capital investment. This extension

shows that this is not the case. At the ZLB, banks are unable to channel deposits to credit-

constrained I-investors for the same reason that savers are unable to do so in the benchmark

model. Instead, banks increase their excess reserves at the central bank.

Consider a simple model of endogenous money. The monetary authority now only controls

base money M0
t+1, which is assumed to be made entirely of banks’ reserves. Total money Mt+1

is made of deposits endogenously supplied by banks. In Equations (8) and (9) of the benchmark

model, money supply Mt+1 has then to be replaced by base money M0
t+1.

There is a unit measure of banks owned by the representative worker. Banks receive a

charter from the government which allows them to issue deposits Mt+1, a zero nominal interest

liability that can be used for transactions in the cash-in-advance constraint of workers. On their

asset side, banks buy central bank reservesM0
t+1 and bonds for a nominal amountMt+1−M0

t+1.

Banks maximize next-period profits, which they rebate (period by period) to households. In

order to limit money creation, the bank charter subjects them to a reserve requirement: their
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buying of bonds cannot exceed a fraction µ of the net present value of deposits:5

Mt+1 −M0
t+1 ≤ µ

Mt+1

it+1

.

The market clearing condition for bonds, given by Equation (10) in the benchmark model,

has to be modified to account for bond demand by banks:

bt+1 + lwt+1 + lgt+1 = at+1 + rt+1

Mt+1 −M0
t+1

Pt
. (34)

It is useful to define M̃0
t+1, an indicator of excess reserves of banks, by:

M̃0
t+1 = M0

t+1 −
(
1− µ

it+1

)
Pt(1− α)Yt.

We obviously have M̃0
t+1 = 0 in the normal equilibrium.6 In the general case, the bond market

equilibrium can be rewritten

bt+1 + lwt+1 + lgt+1 = at+1 + µ
Pt
Pt+1

(1− α)Yt +
MS

t+1 − M̃0
t+1

Pt+1

.

Note that a fraction µ of workers’s money holdings for transaction purposes is channeled by

banks to the bond market. At the zero-lower bound, banks are indifferent between buying

bonds or reserves, the reserve requirement does not bind, and excess reserves M̃0 ≥ 0.

We can now rewrite the main equations of the benchmark model, the Euler equation (13)

and the aggregate budget constraint (14) as

βα(1− φt−1)yt =
1

rt+1

[
(φtα + l̄t)yt+1 − µ

Pt
Pt+1

(1− α)yt +
M̃0

t+1

Pt+1

]
, (35)

kt+1 +
M̃0

t+1

Pt
+ l̄t

yt+1

rt+1

− µ Pt
Pt+1

yt
rt+1

= β

[
(α + l̄t−1)yt − µ

Pt−1

Pt
(1− α)yt−1 +

M̃0
t

Pt

]
. (36)

There are only two changes compared to the benchmark model. First, the net supply of bonds
5While the precise form of the reserve requirement does not matter, this expression yields tractable results.
6When it+1 > 1, banks issue as much money and buy as little reserves as they can and the reserve requirement

is binding. Banks’ reserves are then equal to M0
t+1 = (1− µ/it+1)Mt+1 = (1− µ/it+1)(1− α)Ptyt.
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from the rest of the economy is decreased by the share µ of workers’ deposits lent by banks to

investors: l̄tyt+1 has to be replaced by l̄tyt+1 − µPt/Pt+1(1− α)yt. Second, money holdings by

investors MS is replaced by excess reserves M̃0 at the Central Bank. In this extended model,

the increase in cash holdings by investors at the zero lower bound shows up as an increase in

excess reserves at the Central Bank. Results on the steady state of the benchmark model extend

to the case of endogenous money with the simple change of parameter l̄→ l̄ − µ(1− α)/θ.

5.9 Inefficient saving technology

Suppose there is an inefficient storage technology available to savers with return σ ∈ (θ−1, β−1).

This technology provides an alternative saving instrument to bonds and money holdings. There

is an installation cost: investing a fraction x of saving in this technology only yields a fraction

Ψ(x) that is actually stored, with Ψ twice differentiable, Ψ(0) = 0, Ψ′(0) = 1, Ψ′(1) > 0,

Ψ′(x) > 0, and Ψ′′(x) < 0. For simplicity, we focus on the baseline case of autarkic investors.

Investors in their saving phase choose x to maximize the total return on their saving ρSt+1 =

(1− xt)rt+1 + σΨ(xt). When φ is large enough so that rt+1 ≥ σ, the storage technology is too

inefficient to be used. For lower values of φ, the storage technology starts being used and the

first-order condition with respect to x is rt+1 = σΨ′(xt). The real interest rate decreases with

the use of the inefficient technology. The normal steady state is described by the following

equations:

βσ(1− φ)(1− x)Ψ′(x) = φ, (37)

k = βαy − βαy(1− φ)[x− βσΨ(x)], (38)

where (37) replaces the Euler equation and (38) is the aggregate budget constraint of investors.

From (37), it is clear that a lower leverage φ is associated with a higher use x of the inefficient

storage technology, and therefore with a lower interest rate. From (38), this crowds out invest-

ment k in the efficient production technology. It is easy to check that the average productivity

of capital invested in both technologies is decreasing in φ. This negative reallocative effect of

low interest rates on aggregate productivity is similar to the one studied by Buera and Nicolini

(2016).
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In a liquidity trap equilibrium, the use of the inefficient technology is pinned down by

inflation: θσΨ′(x) = 1. Then, deleveraging shocks are adjusted by higher real money holdings

which crowd out good capital as in the benchmark case, while leaving investment in inefficient

storage unaffected. The liquidity trap equilibrium is indeed described by:

mS = α

[
(1− x)(1− φ)

β

θ
− φ
]
y, (39)

k = βαy − βαy(1− φ)[x− βσΨ(x)]− (θ − β)mS. (40)

The key result of the benchmark model remains valid: mS/y (k/y) decreases (increases) with φ.

Note that the storage technology puts a strictly positive lower bound to the shadow rate,

contrary to the benchmark model where the shadow rate went to 0 in the limit φ→ 0. Indeed,

setting φ to 0 in (37), we get x = 1, with a corresponding shadow rate rS = σΨ′(1) > 0.

These results are summarized by the following Proposition.

Proposition 8 (Inefficient storage technology) Suppose θ < 1/[σΨ′(1)]. Define φE =

βσ/(1 + βσ) and φTE =
β
(
1−Ψ′−1(1/σθ)

)
θ + β

(
1−Ψ′−1(1/σθ)

) . We have φmax > φE > φTE > 0.

(i) If φE ≤ φ < φmax, there is a unique normal steady state with x = 0 similar to the one

described by Proposition 1.

(ii) If φTE ≤ φ < φE, there is a unique normal steady state with x > 0, where r and k are

increasing in φ, and x is decreasing in φ.

(iii) If 0 ≤ φ < φTE, there is a unique liquidity-trap steady state with r = 1/θ < 1 and x > 0,

where x is invariant in φ, mS/y is decreasing in φ, and k is increasing in φ.

(iv) The shadow rate rS is increasing in φ. When φ goes to 0, the shadow rate goes to a lower

bound σΨ′(1) corresponding to x = 1.

Proof. We start by deriving Equations (37) to (40). The optimization problem of investors

is the same as in the benchmark model, with the total return ρS replacing the interest rate

r. With log utility, investors still choose to save a fraction β of their wealth. The demand for

bonds and money by saving investors is a fraction (1 − x) of their saving β(1 − φ)αy. In the
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normal steady state, it has to be equal to the supply of bonds by investors φαy/r. Using the

first-order condition with respect to x, r = σΨ′(x), we get (37). In the liquidity trap steady

state, the demand for bond and money has to be equal to the supply of bonds θαy plus real

money holdings θmS, which gives (39).

To get the aggregate budget constraint of investors, note that their aggregate wealth is equal

to αy+σΨ(x)β(1−φ)αy+mS. The first term is profits from the efficient sector, the second term

is the return of the inefficient storage technology, and the last term is money holdings. They

save a fraction β of this wealth to buy capital k, invest xβ(1− φ)αy in the storage technology,

and acquire money θmS. This gives Equations (38) and (40).

The storage technology is not used as long as the first-order condition with respect to

x is a corner solution: −r + σΨ′(0) ≤ 0. Then, we are in the normal steady state of the

benchmark model with r = φ/[β(1 − φ)]. With Ψ′(0) = 1, the first-order condition becomes

φ ≥ φE. This proves Point (i). The comparative statics of Point (ii) directly derive from

Equations (37) and (38), together with the first-order condition r = σΨ′(x). Note in particular

that x−βσΨ(x) on the right-hand side of (38) is strictly increasing in x. Indeed, its derivative

is given by 1− βσΨ′(x) > 1− βσ > 0 since Ψ′(x) < Ψ′(0) = 1.

When the inefficient technology is in use, the shadow rate is the one that solves

βrS(1− φ)
(
1−Ψ′

−1
(rS/σ)

)
= φ

where we have substituted the first-order condition with respect to x in (37). It is decreasing

in φ. For φ = 0, we have x = 1 from (37) and the shadow rate is then rS = σΨ′(1), which

proves Point (iv). The steady state is normal as long as rSθ > 1. This obtains for φ > φTE,

which ends proving Point (ii).

The comparative statics of Point (iii) are straightforward given Equations (39) and (40)

when x = Ψ′−1(1/θσ).

5.10 Idiosyncratic Uncertainty

In this Appendix we examine a stochastic transition between saving and investing phases. We

assume the following 2-state Markov process for individual investors:
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• an investor with no investment opportunity at time t − 1 receives an investment oppor-

tunity at time t with probability ω ∈ (0, 1],

• an investor with an investment opportunity at time t − 1 receives no investment oppor-

tunity at time t.

While investors face some risk at the individual level, they do not face risk in the aggregate,

as the fraction of investors with investment opportunity is always ω/(1 + ω).

A modified aggregate Euler equation of savers Consider an investor i, and denote Ωi
t

her wealth at the beginning of period t. With log utility, her consumption cit is a fraction 1−β

of wealth Ωi
t, and the Euler equation of an (unconstrained) saver is 1/cit = βrt+1 Et[1/c

i
t+1],

which implies 1/Ωi
t = βrt+1 Et[1/Ω

i
t+1]. For an investor in her saving phase in period t, wealth

in period t+1 is given by Ωi
t+1 = ait+1 +M i

t+1/Pt+1. As there is no aggregate risk, Pt+1 is known

in t, so Ωi
t+1 is known in t and we have βΩi

t = Ωi
t+1/rt+1. Aggregating over saving investors, we

get

β

∫
St(i)Ω

i
tdi =

1

rt+1

∫
St(i)[a

i
t+1 +M i

t+1/Pt]di =
1

rt+1

(
at+1 +

MS
t+1

Pt+1

)
(41)

where St(i) is an indicator equal to 1 if investor i has no investment opportunity at time 1 and

0 if she has, and a and MS denote aggregate bond and money holdings by savers, as in the

benchmark model. To compute the left-hand side of (41), note that investors in their saving

phase at time t are made of a fraction 1 − ω of investors in their saving phase at time t − 1

and all investors in their investment phase at time t− 1. The latter enter period t with wealth

Ωi
t = ρtk

i
t − bit. This implies:

∫
St(i)Ω

i
tdi = (1− ω)

∫
St−1(i)Ωi

tdi+

∫
[1− St−1(i)]Ωi

tdi

= (1− ω)

(
at +

MS
t

Pt

)
+ ρtkt − bt,

where k and b are aggregate capital and aggregate debt of borrowers. As long as ρt > rt, which

will be the case in equilibrium, investors with an investment opportunity will leverage up as

much as possible until they hit their borrowing constraint. Thus, we have bit = φt−1ρtk
i
t, which

aggregates to bt = φt−1ρtkt = φt−1αyt. Substituting these expressions back into Equation (41),
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and using the market-clearing condition (10), we find:

β(1− ω)

[
(φt−1α + l̄t−1)yt +

MS
t

Pt

]
+ βα(1− φt−1)yt =

1

rt+1

[
(φtα + l̄t)yt+1 +

MS
t+1

Pt+1

]
. (42)

This equation extends Equation (13) from the benchmark model to the case of idiosyncratic

uncertainty. It only differs by the first term on the left hand side. This term represents demand

for saving instruments at time t from savers that were already savers at time t− 1. The lower

ω, the larger the share of savers, the higher this additional demand for saving instruments

compared to the benchmark model. The term vanishes when ω = 1.

This is the only difference between the extended model and the benchmark. Indeed, we can

aggregate the budget constraints of all investors, regardless of whether they save or borrow, to

get the same aggregate budget constraint (14) as in the benchmark model.

Steady state with autarkic equilibrium This extended model behaves quite similarly to

the benchmark model. Consider for example the case of autarkic investors (l̄ = 0) treated in

Proposition 1 for the benchmark model. In the extended model, the steady state is determined

by:

β(1− ω)(φαy +mS) + βα(1− φ)y =
1

r
(φαy +mS),

k + (θ − β)mS = βαy.

When β/(θ + ωβ) ≤ φ < 1/(1 + ω), the steady state is normal with mS = 0, a constant

capital stock k = (βα)1/(1−α) as in the benchmark model, and

r =
φ

β(1− ωφ)
.

A lower ω is associated with a lower interest rate: because there are more savers, channeling

saving to investment is more difficult and requires a lower interest rate compared to the bench-

mark model. The interest rate is still strictly increasing in φ, but dr/dφ is increasing in ω:

with a larger share of savers (i.e. a lower ω), the interest rate is lower but less responsive to φ.

Note also that the upper bound on φ in the normal equilibrium is larger than φmax = 1/2: it is
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easier to have binding borrowing constraints when there are more savers. Likewise, the lower

bound is larger than φT : it is easier to be in the liquidity trap equilibrium when there are more

savers.

When 0 < φ < β/(θ + ωβ), the steady state is a liquidity trap with r = 1/θ, and

k1−α = α
ωβ2 + φ

(
θ2 − β[ωβ + (1− ω)θ]

)
θ − (1− ω)β

,

mS = α

[
(1− ωφ)β − φθ
θ − (1− ω)β

]
y.

A lower ω, that is, a higher share of savers, leads to a stronger demand for money mS/y and

a lower stock of capital k. In the liquidity trap, we get the unusual result that more saving

actually leads to less investment. As in Proposition 1, k is strictly increasing in φ, and mS/y is

strictly decreasing in φ. In addition, dk/dφ is decreasing in ω and d(mS/y)/dφ is increasing in

ω. A larger share of savers (i.e. a lower ω) implies steeper slopes of k and mS/y with respect

to φ.

Overall, the results we have in the benchmark model become stronger when investment

opportunity arrive randomly to saving investors instead of in deterministic way.

5.11 QE easing with expected late exit

In the simulation of quantitative easing with late exit presented in Figure 5 of the main text,

the late exit came as a surprise to agents in the model, as it was only announced when the

deleveraging shock stops. In Figure 6, late exit is announced from the start instead. As the

Figure shows, expectation of a late exit has a slight expansionary effect during the deleveraging

shock, supporting capital and output.
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Figure 6: Transitory dynamics after an unexpected deleveraging shock with quantitative easing.
The shock hits in period 1 and lasts for 10 years. Thick red line: quantitative easing with late
exit. The policy of late exit is announced in period 1. Dashed blue line: quantitative easing
with early exit. Thin black line: no quantitative easing. All variables are relative deviation
from initial steady state, in percent, except interest rates, l/Y andM s/M which are in absolute
deviation from initial steady state, in percent.
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6 Welfare

6.1 Intertemporal utility of investors

In a steady state, the utility of investors in their investing phase is given by

U =
log(cI) + β log(cS)

1− β2
=

log(βr) + (1 + β) log
(
(1− β)(1− φ)αy

)
1− β2

.

The first term on the numerator reflects consumption smoothing and depends positively on

the real interest rate. The second term reflects the level of the whole consumption path and

depends on output. In the case of autarkic investors, the difference of utility in the liquidity

trap and the normal steady state is then given by:

(1− β2)(ULT − Unormal) = − log(θrS) + (1 + β)
α

1− α
log((1− φ)β/θ + φθ/β)

= − log(1− θ∆) + (1 + β)
α

1− α
log
(

1− (θ − β)∆

1 + β/θ − β∆

)
where ∆ is the interest rate gap. Both logarithms are strictly negative when ∆ > 0. The first

term is therefore positive, reflecting better consumption smoothing in the liquidity trap. The

second term is negative, due to lower capital and output. However, the second term is first

order in θ − β, and is likely to be small for any realistic calibration of these parameters, since

they are both close to 1. The first term can be rewritten − log(1− β∆)− log
(
1− (θ−β)∆

1−β∆

)
and

is 0-order in θ−β. Therefore, unless α is very close to 1, the first term should be strictly larger

than the second term.

A similar reasoning applies to the utility of investors in their saving phase.

6.2 Efficient allocations

The following proposition characterizes efficient allocations.

Proposition 9 (Efficient allocations) An allocation {kt+1, c
I
t , c

S
t , c

w
t } satisfying the resource

constraint yt = kt+1 + cIt + cSt + cwt is Pareto efficient if and only if kt+1 = βαyt and cwt+1/c
w
t =

cIt+1/c
S
t = cSt+1/c

I
t = βρt+1 = yt+1/yt.
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Proof. Denote by the superscript 1 (2) the group of investors in their saving (investing) phase

in even (odd) periods. A Pareto-efficient allocation maximizes
∑∞

t=0 β
t(λ1 log c1

t + λ2 log c2
t +

λw log cwt ) under the resource constraint yt = kt+1 + c1
t + c2

t + cwt , where λi, i = 1, 2, w are Pareto

weights associated to both groups of investors and workers which sum to 1. The maximization

can be carried out in two steps. First, maximize (c1
t )
λ1(c2

t )
λ2(cwt )λ

w s.t. c1
t + c2

t + c3
t = Ct in any

period, which gives constant shares of aggregate consumption cit = λiCt. Then, maximize∑∞
t=0 β

t logCt s.t. yt = kt+1 + Ct. This well-known maximization problem has the first-

order condition Ct+1/Ct = βρt+1 = βαkα−1
t+1 and is solved by kt+1 = βαyt. Having individual

consumptions equal to constant shares of aggregate consumption is equivalent to having all

individual consumption grow at the same rate, which is also the rate of output growth.

We can check that for l̄ ≥ l̄max, the steady state is Pareto-efficient and satisfies the charac-

teristics described in Proposition 9.

6.3 Pareto-improving Policy with Additional Policy Instruments

Consider the following additional policy instruments: a capital subsidy γt (such that one unit

of capital is paid 1− γt by investors), a consumption tax ηt (such that one unit of consumption

costs 1 + ηt to consumers), and a corporate tax τ kt paid by S-investors on their profits. With

these additional policy instruments, the (binding) borrowing constraint (3) becomes bt+1 =

φt(1− τ kt+1)ρt+1kt+1 = φt(1− τ kt+1)αyt+1, and Equations (13) and (14) respectively become:

βα(1− τ kt )(1− φt−1)yt =
1

rt+1

[(
(1− τ kt+1)φtα + l̄t

)
yt+1 +mS

t+1

]
, (43)

(1− γt)kt+1 + πt+1m
S
t+1 +

1

rt+1

l̄tyt+1 = β
[(

(1− τ kt )α + l̄t−1

)
yt +mS

t

]
. (44)

Consumption of all three agents follows:

cSt =
1

1 + ηt
(1− β)[α(1− τ kt )yt − bt], (45)

cIt =
1

1 + ηt
(1− β)

[
bt + l̄t−1yt +mS

t

]
, (46)

cwt =
1

1 + ηt

[
Twt
Pt

+
Mw

Pt
+
lwt+1

rt+1

− lwt
]
. (47)
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Finally, the government budget constraint is now:

Mt+1

Pt
+
lgt+1

rt+1

+ τ kt αyt + ηt(c
w
t + cIt + cSt ) =

Mt

Pt
+
Tw

Pt
+ lgt + γtkt+1. (48)

Consider an economy in a liquidity trap steady state at t = −1. Suppose that the gov-

ernment has already implemented an open-market operation to increase debt to the limit of

the normal equilibrium, such that l̄−1 = l̄T (φ) (using the definitions of Proposition 3) and

mS
0 = 0 in period t = −1. The following Proposition shows that an appropriate debt policy,

together with the three policy instruments mentioned above, can lead to a Pareto-improving

and Pareto-efficient equilibrium from t = 0 on.

Intuitively, this policy consists in increasing debt sufficiently to be in the normal equilibrium

in all periods. Getting the right level of investment during the transition is done with the capital

subsidy. Engineering transfers from investors to workers is done through a consumption tax

(together with the lump-sum transfers to workers already assumed in the baseline model).

Finally, smoothing investors’ consumption during the transition is done through the tax on

corporate profits.

Proposition 10 (Pareto-efficient policy) Consider constant leverage {φ, l̄w}. Suppose the

economy is initially in a liquidity trap steady state at t = −1 with l̄g−1 + l̄w = l̄T (φ), mS
0 = 0

and zero taxes and subsidies: γ−1 = η−1 = τ k−1 = 0. Define a policy by a sequence {l̄gt , γt, ηt, τ kt }

for t ≥ 0 and suppose that Mt+1 = θMt and that transfers Twt adjust the government budget

constraint (48). There is a policy such that the associated equilibrium:

• is not a liquidity trap (it+1 > 1 for all t ≥ 0),

• is Pareto-efficient as described in Proposition 9,

• Pareto-improves on the initial steady state.

Proof. We provide a proof by construction. Consider arbitrary λ1, λ2, λw in (0, 1) with λ1 +

λ2 + λw = 1.

Consider now the candidate policy defined in the following way.

1 + ηt =
α(1− β)

1− αβ
l̄−1 + αφ

αλ2
t ≥ 0,
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1− τ k0 = φ+
λ1

λ2

( l̄−1

α
+ φ
)
,

1− τ k1 = (1− τ k0 )
φ

1− φ
+

1

1− φ
l̄−1

α
,

τ kt = τ kt−2 t ≥ 2,

γt = τ kt+1 t ≥ 0,

l̄g0 = α(1− τ k0 )
1− 2φ

1− φ
− φ

1− φ
l̄−1 − l̄w,

l̄gt = l̄gt−2 t ≥ 1.

We now show all three statements of the Proposition in turn. First, the equilibrium is

normal. Indeed, start looking for a normal equilibrium with ms
t = 0. Plugging the candidate

policy into (43) we get rt+1 = yt+1/(βyt). From the money market equilibrium (15), we have

Pt+1/Pt = θyt/yt+1. As a result, we get a gross nominal rate it+1 = Pt+1rt+1/Pt = θ/β > 1

from Assumption 1, which confirms that we are indeed in a normal equilibrium.

Second, plugging the candidate policy together with the equilibrium real interest rate

into (44), we get kt+1 = βαyt. Plugging the policy in (45) and (46), we get cIt+1/c
S
t = cSt+1/c

I
t =

yt+1/yt. Consumption growth of workers cwt+1/c
w
t = yt+1/yt follows from the aggregate resource

constraint yt = kt+1 + cIt + cSt + cwt . From Proposition 9, this implies that the equilibrium is

Pareto efficient.

Finally, plugging the policy into (45) and (46) at t = 0 with b0 = φαy0, we get cS0 =

λ1(y0 − k1) = λ1(cS0 + cI0 + cw0 ) and cI0 = λ2(cS0 + cI0 + cw0 ). This implies that λ1, λ2, λw are the

Pareto weights associated to both groups of investors and workers, where the superscript 1 (2)

denotes the group of investors in their saving (investing) phase in even (odd) periods, as in the

proof of Proposition 9. As the choice of these weights was not constrained, it is always possible

to choose them in such a way that all agents get at least the utility they had in the initial

steady state. Therefore, the equilibrium Pareto-improves on the initial steady state.
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